We thank the SERC for the award of a postgraduate studentship to TG and Johnson Matthey plc for a loan of palladium chloride.

References

- Berry, D. E., Beveridge, K. A., Bushnell, G. W. & Dixon, K. R. (1985). Can. J. Chem. 63, 2949-2957.
- Bruce, M. I., Liddell, M. J. & Pain, G. N. (1989). Inorg. Synth. 26, 171-180.
- Colbron, S. B., Craig, D. C. & Sembiring, S. B. (1990). Inorg. Chim. Acta, 176, 225-231.
- Cornock, M. C., Gould, R. O., Jones, C. L. & Stephenson, T. A. (1977). J. Chem. Soc. Dalton Trans. pp. 1307-1313.
- Dixon, K. R. & Rattray, A. D. (1971). Can. J. Chem. 49, 3997-4004.
- Emsley, J. (1984). Struct. Bonding, 57, 147-191.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Gebauer, T., Frenzen, G. & Dehnicke, K. (1992). Z. Naturforsch. Teil B, 47, 1505-1512.
- Grant, D. F. & Gabe, E. J. (1974). A Four-Circle Diffractometer Control System. Ottawa: NRC.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Naik, D. V., Palenik, G. J., Jacobson, S. & Carty, A. J. (1974). J. Am. Chem. Soc. 96, 2286-2288.
- Nifant'ev, E. E., Kukhareva, T. S., Antipin, M. Yu., Struchkov, Yu. T. & Klabunovsky (1983). Tetrahedron, 39, 797-803.

 μ_3 -(0,0'-Diethyl dithiophosphato-2 κ S,-

 $3:4\kappa^2 S'$)-di- μ_3 -sulfido- $1:2:3\kappa^3 S:1:2:4\kappa^3 S-\mu$ -

Comment

Several complexes of the M-Ag-S series (M = Mo, W) have been found in recent years (Gheller et al., 1984; Müller & Menge, 1972; Müller, Bögge, Königer-Ahlborn & Hellman, 1979) but research into the incomplete cubane-like structures in such a series is just beginning (Nianyong, Yifan & Xintao, 1990). The title compound (I) $[MoAg_3(C_4H_{10}O_2PS_2) (C_{18}H_{15}P)_{3}S_{4}$] is an incomplete cubane-like cluster in which one Ag-S distance is too long for effective bonding [Ag(3)...S(3) 2.971 Å]. The structure of the title compound is similar to that of other cubane-like clusters $[MoAg_3S_3Cl](X)(Ph_3P)_3$ (X = O or S) (Nianyong, Jianhui, Shaowu & Xintao, 1992; Jianhui, Nianyong, Shaowu & Xintao, 1992) except that the Cl⁻ anion is replaced by a bidentate diethyl dithiophosphate ligand.

The mean interatomic distances are Mo-Ag 3.046 (2), Ag—(μ_3 -S) 2.577 (4), Mo—(μ -S) 2.233 (4) and Mo=S 2.131 (4) Å. The Mo atom is tetrahedrally coordinated by four S atoms and the Ph₃P ligands complete the tetrahedral geometry at each Ag atom.

sulfido-1: $3\kappa^2 S$ -sulfido-1 κS -tris(triphenvlphosphine)- $2\kappa P$; $3\kappa P$; $4\kappa P$ -molvbdenum-Ag(2 S(5) C(2) Ag(3) 0(2) Pŀ S(6) C(3)

SHAOWU DU AND XINTAO WU*

Acta Cryst. (1994). C50, 700-702

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter. Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China

(Received 23 March 1993; accepted 29 September 1993)

Abstract

trisilver

The structure of the title compound, $[MoAg_3S_4(C_4 H_{10}O_2PS_2$)($C_{18}H_{15}P$)₃], contains an incomplete cubane-like cluster core, $[MoAg_3(C_4H_{10}O_2PS_2)S_3]^{2+}$, in which a diethyl dithiophosphate group acts as a triply bridging ligand to coordinate three Ag atoms with bond lengths of 2.626(4) [Ag(1)—S(6)], 2.690 (4) [Ag(2)-S(5)] and 2.698 (4) Å [Ag(3)-S(5)].

©1994 International Union of Crystallography Printed in Great Britain - all rights reserved

Fig. 1. View of the title compound. Displacement ellipsoids are shown at the 30% probability level.

SHAOWU DU AND XINTAO WU

Experimental		O(1)	0.5903 (8)	0.2706 (5)	1.2183 (9)	3.8 (5)
Crystal data		O(2)	0.7593 (8)	0.2048 (5)	1.1791 (9)	3.8 (5)
Ci ysiai daid		C(1)	0.62/(15)	0.3224(9) 0.3020(11)	1.3201 (10)	5.2 (4) 7 2 (5)
$[MoAg_3S_4(C_4H_{10}O_2PS_2)-$	Mo $K\alpha$ radiation	C(2)	0.0130(18) 0.7741(14)	0.1354 (9)	1.1895 (16)	4.9 (4)
$(C_{18}H_{15}P)_3]$	$\lambda = 0.71069 \text{ A}$	C(4)	0.7509 (25)	0.1221 (16)	1.2940 (28)	11.0 (8)
$M_r = 1519.87$	Cell parameters from 20	C(111)	0.5865 (11)	-0.0122 (7)	0.7251 (11)	2.7 (3)
Triclinic	reflections	C(112)	0.5777 (15)	-0.0777 (9)	0.6878 (16)	4.9 (4)
$P\overline{1}$	$\theta = 15 - 27.5^{\circ}$	C(113)	0.4873 (16)	-0.0990 (10)	0.6116 (17)	5.5 (4)
a = 13576(2) Å	$\mu = 1.494 \text{ mm}^{-1}$	C(114)	0.4042 (13)	-0.0512 (8)	0.5/14(14)	4.3 (3)
h = 20.603 (3) Å	T = 296 K	C(115)	0.4084 (14)	0.0133(8) 0.0352(8)	0.0037(13) 0.6808(13)	37(3)
c = 11.675(2) Å	Cubic	C(12)	0.8048 (12)	-0.0305(7)	0.7452 (12)	3.2 (3)
c = 101.03(2) A	$0.55 \times 0.50 \times 0.20 \text{ mm}$	C(122)	0.8377 (14)	0.0054 (9)	0.6788 (15)	4.5 (4)
$\alpha = 101.05(1)$		C(123)	0.9100 (16)	0.0281 (10)	0.6108 (18)	6.2 (5)
$\beta = 107.20(1)^{2}$	Dark red	C(124)	0.9469 (16)	-0.0967 (10)	0.6143 (18)	6.0 (4)
$\gamma = 77.25 (1)^{\circ}$	Crystal source: from 2-	C(125)	0.9169 (17)	-0.1300 (11)	0.6793 (19)	6.4 (5)
$V = 3014.6 (9) \text{ A}^3$	propanol, dichloromethane	C(126)	0.8463 (15)	-0.0998 (9)	0.7480 (16)	5.1 (4)
Z = 2	and ethanol	C(131)	0.7302 (12)	-0.0252(7) -0.0394(9)	0.9385 (15)	5.4 (5)
$D_x = 1.67 \text{ Mg m}^{-3}$		C(132)	0.0332(13) 0.6786(22)	-0.0594(9) -0.0625(13)	1,1068 (23)	8.5 (6)
		C(133)	0.7813 (21)	-0.0775(12)	1.1713 (21)	7.5 (5)
		C(135)	0.8586 (19)	-0.0666 (11)	1.1378 (20)	7.0 (5)
Data an Unation		C(136)	0.8377 (16)	-0.0396 (10)	1.0268 (18)	5.8 (4)
Data collection		C(211)	1.0053 (11)	0.4234 (7)	1.1689 (11)	2.7 (2)
Rigaku AFC-5R diffractome-	$R_{\rm int} = 0.032$	C(212)	1.0932 (12)	0.4543 (7)	1.1972 (12)	3.3 (3)
ter	$\theta_{\rm max} = 25^{\circ}$	C(213)	1.0861 (12)	0.518/(/)	1.1819(13)	3.3(3)
ω -2 θ scans	$h = 0 \rightarrow 16$	C(214)	0.9691 (11)	0.5578 (7)	1.1340 (12)	40(3)
Absorption correction:	$k = -25 \rightarrow 25$	C(215)	0.9085 (11)	0.4634 (7)	1.1217 (12)	2.9 (3)
empirical	$l = -14 \rightarrow 14$	C(221)	0.9883 (10)	0.3459 (6)	1.3351 (11)	2.2 (2)
T = 0.71 $T = 1.13$	3 standard reflections	C(222)	0.9317 (11)	0.3023 (7)	1.3536 (12)	3.0 (3)
$I_{\rm min} = 0.71, I_{\rm max} = 1.15$	monitored every 250	C(223)	0.9170 (13)	0.3056 (8)	1.4675 (14)	4.1 (3)
10 (02 in demondent reflections	reflections	C(224)	0.9543 (14)	0.3518 (8)	1.5617 (15)	4.4 (3)
10 605 independent reflec-	intensity veriation, none	C(225)	1.0112 (13)	0.3933 (8)	1.3442 (14)	3.9(3)
tions	intensity variation. none	C(220)	1.1397 (11)	0 2969 (7)	1.1951 (12)	2.9 (3)
5691 observed reflections		C(232)	1.1652 (14)	0.2655 (8)	1.0881 (14)	4.3 (3)
$[I > 5\sigma(I)]$		C(233)	1.2668 (15)	0.2355 (9)	1.0850 (16)	5.3 (4)
		C(234)	1.3439 (15)	0.2357 (9)	1.1917 (17)	5.3 (4)
		C(235)	1.3217 (15)	0.2644 (9)	1.2971 (16)	5.1 (4)
Refinement		C(236)	1.2198 (13)	0.2943 (8)	1.2994 (14)	4.1 (3)
	2 · 7 · 7	C(312)	0.3329(12) 0.2469(14)	0.2977(7)	0.7414(12) 0.7818(15)	4.8 (4)
Refinement on F	$w = 1/\sigma^2(F_o)$	C(313)	0.1749 (15)	0.2576 (9)	0.7267 (16)	5.4 (4)
R = 0.054	$(\Delta/\sigma)_{\rm max} = 0.34$	C(314)	0.1972 (16)	0.2093 (10)	0.6330 (17)	5.7 (4)
wR = 0.087	$\Delta \rho_{\rm max}$ = 1.06 e Å ⁻³	C(315)	0.2830 (16)	0.2044 (10)	0.5919 (17)	5.6 (4)
S = 2.17	$\Delta \rho_{\rm min} = -0.86 \ {\rm e} \ {\rm \AA}^{-3}$	C(316)	0.3509 (16)	0.2487 (10)	0.6476 (17)	5.7 (4)
5691 reflections	Extinction correction: none	C(321)	0.3796 (12)	0.4148 (7)	0.6870 (12)	3.2 (3)
377 parameters	Atomic scattering factors	C(322)	0.2838(15) 0.2488(15)	0.4330 (9)	0.6690 (16)	4.9 (4) 5 1 (4)
H-atom parameters not	from Cromer & Waher	C(323)	0.3097 (18)	0.4953 (11)	0.5066 (19)	6.5 (5)
refined	(1074)	C(325)	0.4048 (19)	0.4546 (12)	0.5185 (20)	7.4 (5)
Tenned	(17/4)	C(326)	0.4406 (16)	0.4152 (10)	0.6110 (18)	5.8 (4)
		C(331)	0.3964 (12)	0.4031 (7)	0.9362 (12)	3.2 (3)
		C(332)	0.3851 (12)	0.4740 (7)	0.9589 (12)	3.3 (3)
Table 1 Exactional stamic	accordinates and equivalent	C(333)	0.3696 (13)	0.5079 (8)	1.0086 (14)	4.1 (5)
table 1. Fractional atomic coordinates and equivalent			0.3038(13)	0.4740(8)	1.1359 (14)	3.9 (3) 4.1 (3)
isotropic displacement parameters (A ²)			0.3934 (13)	0.3715 (8)	1.0267 (14)	3.8 (3)

$$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	B_{eq}	Table 2. Selected geometric parameters (Å, °)			
Мо	0.81383 (9)	0.21819 (6)	0.77215 (10)	2.24 (5)	14010 2.	Selected geen		~ (,)
Ag(1)	0.69957 (10)	0.13586 (6)	0.86264 (10)	3.35 (5)	Mo-Ag(1)	3.036 (2)	S(5)—P	1.995 (5)
Ag(2)	0.87526 (10)	0.28773 (6)	1.02438 (10)	3.46 (5)	Mo—Ag(2)	2.980 (2)	S(6)—P	1.977 (5)
Ag(3)	0.60769 (10)	0.29711 (7)	0.83435 (12)	4.48 (6)	Mo-Ag(3)	3.122 (2)	PO(1)	1.58 (1)
S(1)	0.8855 (3)	0.1653 (2)	0.9365 (3)	2.7 (1)	Mo-S(1)	2.246 (4)	PO(2)	1.57 (1)
S(2)	0.6536 (3)	0.1975 (2)	0.6752 (3)	3.2 (2)	Mo—S(2)	2.228 (4)	O(1) - C(1)	1.48 (2)
S(3)	0.8042 (4)	0.3290 (2)	0.8136 (3)	3.9 (2)	Mo-S(3)	2.225 (4)	O(2)C(3)	1.42 (2)
S(4)	0.9113 (4)	0.1796 (2)	0.6524 (4)	4.4 (2)	MoS(4)	2.131 (4)	C(1)C(2)	1.48 (3)
S(5)	0.6884 (3)	0.3258 (2)	1.0751 (3)	3.4 (2)	Ag(1) - S(1)	2.583 (4)	C(3)—C(4)	1.43 (3)
S(6)	0.5620 (3)	0.1927 (2)	0.9856 (4)	3.7 (2)	Ag(1) - S(2)	2.588 (4)	P(1)C(111)	1.81 (1)
P	0.6515 (3)	0.2465 (2)	1.1173 (3)	2.8 (2)	Ag(1) - S(6)	2.626 (4)	P(1)C(121)	1.81 (1)
P(1)	0.7062 (3)	0.0138 (2)	0.8216(3)	2.8 (2)	Ag(2) - S(1)	2.525 (4)	P(1)C(131)	1.82 (2)
P(2)	1.0056 (3)	0.3388 (2)	1.1850 (3)	2.5 (1)	Ag(2)S(3)	2.598 (4)	P(2)—C(211)	1.79 (1)
P(3)	0.4260 (3)	0.3570 (2)	0.7995 (3)	3.0 (2)	Ag(2) - S(5)	2.690 (4)	P(2)—C(221)	1.81 (1)

$[MoAg_3S_4(C_4H_{10}O_2PS_2)(C_{18}H_{15}P)_3]$

Ag(3) - S(2)	2.591 (4)	P(2)-C(231)	1.82(1)
Ag(3) - S(5)	2.698 (4)	P(3)-C(331)	1.80(1)
Ag(1) - P(1)	2.454 (4)	P(3)-C(321)	1.82(1)
Ag(2)—P(2)	2.420 (4)	P(3)—C(311)	1.85(1)
Ag(3)—P(3)	2.454 (4)		
Ag(1)—Mo—Ag(3)	65.33 (4)	C(211)—P(2)—C(231)	104.3 (6)
Ag(2)—Mo— $Ag(1)$	87.84 (4)	C(221)—P(2)—C(231)	105.8 (6)
Ag(2)-Mo-Ag(3)	73.18 (4)	C(331)—P(3)—C(321)	106.5 (7)
S(2)—Mo— $S(1)$	112.5 (1)	C(331)—P(3)—C(311)	105.3 (7)
S(3)—Mo— $S(1)$	113.2(1)	C(321)-P(3)-C(311)	102.0 (7)
S(3)—Mo—S(2)	107.8 (2)	Mo-S(2)-Ag(1)	77.8 (1)
S(4)—Mo— $S(1)$	106.6 (2)	Mo-S(2)-Ag(3)	80.4 (1)
S(4)—Mo—S(2)	107.7 (2)	Mo-S(3)-Ag(2)	75.9(1)
S(4)—Mo—S(3)	108.9 (2)	Ag(1) - S(2) - Ag(3)	79.9 (1)
P(1) - Ag(1) - S(1)	111.2 (1)	Ag(2) - S(1) - Ag(1)	109.6 (1)
P(1) - Ag(1) - S(2)	116.1(1)	Ag(2) - S(5) - Ag(3)	85.0(1)
P(1) - Ag(1) - S(6)	110.4 (1)	P-S(5)-Ag(2)	108.2 (2)
S(1) - Ag(1) - S(2)	92.0(1)	P-S(5)-Ag(3)	95.2 (2)
S(1) - Ag(1) - S(6)	119.3 (1)	P - S(6) - Ag(1)	98.6 (2)
S(2) - Ag(1) - S(6)	106.9(1)	O(2) - P - O(1)	106.0 (6)
P(2) - Ag(2) - S(1)	127.4 (1)	O(2)—P—S(5)	104.7 (4)
P(2) - Ag(2) - S(3)	121.7(1)	O(2)—P—S(6)	113.5 (4)
P(2) - Ag(2) - S(5)	109.2 (1)	O(1)-P-S(5)	109.4 (4)
S(1) - Ag(2) - S(3)	93.5 (1)	O(1) - P - S(6)	105.6 (4)
S(1) - Ag(2) - S(5)	105.9(1)	S(6) - P - S(5)	117.1 (2)
S(3) - Ag(2) - S(5)	93.2 (1)	C(1) - O(1) - P	119(1)
S(2) - Ag(3) - S(5)	133.0(1)	C(3)—O(2)—P	124 (1)
P(3) - Ag(3) - S(2)	118.4 (1)	C(2) - C(1) - O(1)	107 (1)
P(3) - Ag(3) - S(5)	103.8 (1)	O(2) - C(3) - C(4)	114 (2)
Mo-S(1)-Ag(1)	77.6(1)	C(111) - P(1) - Ag(1)	114.5 (5)
Mo-S(1)-Ag(2)	77.1 (1)	C(121) - P(1) - Ag(1)	113.7 (5)
C(321) - P(3) - Ag(3)	118.1 (5)	C(131) - P(1) - Ag(1)	113.2 (5)
C(311) - P(3) - Ag(3)	111.0 (5)	C(211) - P(2) - Ag(2)	112.7 (5)
C(111)-P(1)-C(121)	103.8 (6)	C(221) - P(2) - Ag(2)	114.8 (4)
C(111) - P(1) - C(131)	105.7 (7)	C(231) - P(2) - Ag(2)	114.7 (4)
C(121)-P(1)-C(131)	104.8 (7)	C(331) - P(3) - Ag(3)	112.7 (5)
C(211)—P(2)—C(221)	103.5 (6)		()

Data collection was performed using CONTROL (Molecular Structure Corporation, 1986) software. The scan speed varied between 2.4 and $8^{\circ} \text{ min}^{-1}$ (in ω) on the basis of SEARCH intensity. The scan width was $(1.418 + 0.350 \tan \theta)^{\circ}$ with maximum $(\sin\theta)/\lambda = 0.5946 \text{ Å}^{-1}$. The structure was solved by direct methods using MITHRIL (Gilmore, 1983). The heavy atoms. Mo and Ag, were located in the E map and the remaining non-H atoms were located using the DIRDIF program (Beurskens, 1984). H atoms were placed in geometrically calculated positions (C-H 0.95 Å), but not included in the refinement. The structure was refined by full-matrix least-squares techniques with anisotropic displacement parameters for all Mo, Ag, S, P and O atoms and isotropic displacement parameters for all C atoms. All calculations were performed on a VAX 785 computer using the TEXSAN (Molecular Structure Corporation, 1985) program package. The view of the molecule (Fig. 1) was produced using ORTEPII (Johnson, 1976).

This research was supported by grants from the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences and the National Science Foundation of China.

References

- Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures – an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Univ. of Nijmegen, The Netherlands.
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Tables 2.2A, 2.3.1. Birming-ham: Kynoch Press. (Present distributor Kluwer Academic Publishers.)
- Gheller, S. F., Hambley, T. W., Rodgers, J. R., Brownlee, R. T. C., O'Connor, M. J., Snow, M. R. & Wedd, A. G. (1984). *Inorg. Chem.* 23, 2519–2528.
- Gilmore, C. J. (1983). MITHRIL. Computer Program for the Automatic Solution of Crystal Structures from X-ray Data. Department of Chemistry, Univ. of Glasgow, Scotland.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. 3200 Research Forest Drive, The Woodlands, TX 77381, USA. (Revised 1987.)
- Molecular Structure Corporation (1986). CONTROL. An Automation Package for Rigaku AFC Single Crystal Diffractometers. 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Müller, A., Bögge, H., Königer-Ahlborn, E. & Hellman, W. (1979). Inorg. Chem. 18, 2301–2304.
- Müller, A. & Menge, R. (1972). Z. Anorg. Allg. Chem. 393, 259-261.
- Wu, J., Zhu, N., Du, S. & Wu, X. (1992). Polyhedron, 11, 1201-1204.
- Zhu, N., Wu, J., Du, S. & Wu, X. (1992). Inorg. Chim. Acta, 191, 65–68.
- Zhu, N., Zheng, Y. & Wu, X. (1991). J. Chem. Soc. Chem. Commun. pp. 235–237.

Acta Cryst. (1994). C50, 702-704

Bis(2,6-di-*tert*-butylphenolato- κO)tin

David M. Barnhart, David L. Clark* and John G. Watkin*

Isotope and Nuclear Chemistry Division, Mail Stop C346, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

(Received 15 April 1993; accepted 27 September 1993)

Abstract

The title compound, $[Sn(C_{14}H_{21}O)_2]$ (I), contains a two-coordinate tin metal center with Sn—O distances of 2.003 (3) and 2.044 (3) Å, and an O—Sn—O angle of 88.8 (1)°.

Comment

The related complex $Sn(O-2,6'Bu_2-4-Me-C_6H_2)_2$, prepared from the reaction of tin(II) chloride with lithium 2,6-di-*tert*-butyl-4-methylphenoxide, has

Lists of structure factors, anisotropic displacement parameters and Hatom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71691 (25 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL1055]